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Let f be a continuous function on [&1, 1], which changes its monotonicity finitely
many times in the interval, say s times. We discuss the validity of Jackson-type
estimates for the approximation of f by algebraic polynomials that are comonotone
with it. While we prove the validity of the Jackson-type estimate involving the
Ditzian�Totik modulus of continuity and a constant which depends only on s, we
show by counterexamples that in many cases this is not so, even for functions which
possess locally absolutely continuous derivatives. These counterexamples are given
when there are certain relations between s, the number of changes of monotonicity,
and r, the number of derivatives. For other cases we do have some Jackson-type
estimates and another paper will be devoted to that. � 1997 Academic Press

1. INTRODUCTION AND MAIN RESULTS

The first Jackson-type estimate in the approximation of a nondecreasing
f # C[&1, 1] by nondecreasing polynomials was obtained by Lorentz and
Zeller [LoZ] who proved that

E (1)
n ( f )�c| \ f,

1
n+1+ , n�0, (1.1)

where E (1)
n ( f ) denotes the degree of approximation of f by nondecreasing

algebraic polynomials of degrees �n, c an absolute constant and |( f, t)
the modulus of continuity of f.
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As usual, we denote by Wr the space of functions f which possess an
absolutely continuous (r&1)st derivative on [&1, 1] and & f (r)&<�,
where

&g& :=esssup[ | g(x)| : x # [&1, 1]].

For a nondecreasing f # Wr with r=1, (1.1) yields inequality

E (1)
n ( f )�c(r)

& f (r)&
(n+1)r , n�r&1. (1.2)

This inequality holds as well for a nondecreasing f # Wr, for any r�2; for
r=2 it is due to Lorentz [Lo], and for r>2 it is due to DeVore [De].

Inequality (1.2) can be extended to the ``bigger'' space Br, namely, the
space of functions f which possess a focally absolutely continuous (r&1)st
derivative in (&1, 1), such that

&.rf (r)&<�, (1.3)

where .(x) :=- 1&x2.
For a nondecreasing function f # Br it follows that

E (1)
n ( f )�c(r)

&.rf (r)&
(n+1)r , n�r&1. (1.4)

For r=1, 2, (1.4) is due to Leviatan [Le], and for r>2 it is due to
Dzyubenko et al. [DzLiS].

Now let f # C[&1, 1] change monotonicity finitely many times, say
s�1, in the interval, and we wish to approximate f by polynomials pn # Pn ,
the space of polynomials of degree not exceeding n, which are comonotone
with f. To be specific, let s�1 and let Ys be the set of all collections
Y :=[ yi]s

i=1 of points, &1< ys< } } } < y1<1. For Y # Ys we set

6(x, Y ) := `
s

i=1

(x& yi),

and denote by 2(1)(Y ) the set of functions f # C[&1, 1] which change
monotonicity at the points yi , and which are nondecreasing in ( y1 , 1), that
is, f is nondecreasing in the intervals ( y2j+1 , y2j) and it is nonincreasing in
( y2j , y2j&1).

Note that if f # 2(1)(Y ), then evidently f $ exists almost everywhere in
(&1, 1), and

f $(x) 6(x, Y )�0, a.e. in (&1, 1).
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Conversely, if f # C1(&1, 1) and

f $(x) 6(x, Y )�0, x # (&1, 1),

then f # 2(1)(Y ).
Put

Y :=�s Ys .

Then, we call a collection Y # Y, s-admissible for f and write Y # As( f ), if
Y # Ys and f # 2(1)(Y ). We write f # 2(1, s), if As( f ){<. Note that a func-
tion may belong at the same time to different classes 2(1, s1) and 2(1, s2) (that
is, with s1 {s2).

For Y # Y and f # C[&1, 1] we denote

E (1)
n ( f, Y ) :=inf[& f& pn& : pn # 2(1)(Y ) & Pn]. (1.5)

For f # 2(1, s) set

E (1, s)
n ( f ) := sup

Y # As( f )
E (1)

n ( f, Y ) (1.6)

and

e(1, s)
n ( f ) := inf

Y # As( f )
E (1)

n ( f, Y ). (1.7)

The first Jackson-type estimates for comonotone polynomial approxima-
tion were obtained independently by Iliev [I] and Newman [N] who
proved that for f # 2(1, s),

E (1, s)
n ( f )�c(s) | \ f,

1
n+1+ , n�0. (1.8)

If f # 2(1, s) & W r with r=1, then (1.8) yields the inequality

E (1, s)
n ( f )�c(r, s)

& f (r)&
(n+1)r , n�r&1. (1.9)

This inequality is valid also for f # 2(1, s) & Wr, for any r�2. For r=2 it is
due to Beatson and Leviatan [BLe], while for r>2 it is due to Gilewicz
and Shevchuk [GS].

For a function f # 2(1)(Y ), where Y # Y, Leviatan [Le] proved that

E (1)
n ( f, Y )�c(Y ) |. \ f,

1
n+1+ , n�0, (1.10)
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where c(Y ) is a constant depending only on Y, and

|.( f, t)

:= sup
0<h�t

sup {} f \x+
h
2

.(x)+& f \x&
h
2

.(x)+} : x\
h
2

.(x) # [&1, 1]=
is a Ditzian�Totik modulus of continuity.

In Section 2 we will strengthen (1.8) and (1.10) by proving the following

Theorem 1. If f # 2(1, s), then

E (1, s)
n ( f )�c(s) |. \ f,

1
n+1+ , n�0, (1.11)

where c(s) is a constant depending only on s.

For f # 2(1, s) & Br with r=1, (1.11) yields the inequality

E (1, s)
n ( f )�c(r, s)

&.rf (r)&
(n+1)r , n�r&1. (1.12)

In a forthcoming article we shall prove (1.12) for f # (1, s) & Br, with
r>2s+2. We also conjecture that (1.12) holds for r&2=1=s. On the
other hand, we will prove in the following that for all other cases (1.12) is
false. Indeed, we will show in Section 3 the following

Theorem 2. Let the constant A>0 be arbitrary and let s�1 and
2�r�2s+2, excluding r&2=1=s. Then, for any n, there exists a function
f = fs, r, n # 2(1, s) & Br, for which

E (1, s)
n ( f )�e (1, s)

n ( f )�A &.rf (r)&. (1.13)

2. PROOF OF THEOREM 1

1. First we need some notation of [Dzj], [GS], and [S], and we
make use of some arguments therein. Namely, for each j=0, ..., n, we set
xj :=xj, n :=cos( j?�n), hj :=xj&1&xj , x&1 :=1, and xn+1 :=&1. We fix an
arbitrary collection Y # As( f ), and denote 6(x) :=6(x, Y ). Let

Oi :=Oi, n(Y ) :=(xj+1 , xj&2), if yi # [xj , xj&1),

and set

O :=O(n; Y ) := .
s

i=1

Oi . (2.1)
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For j=1, ..., n we write j # H :=H(n, Y ) if [xj , xj&1] & O=<. Note that if
n>3s, then H{<.

For each j=1, ..., n, we denote

/j (x) :=/j, n(x) :={0,
1,

x�xj ,
x>xj ,

we set

;0
j :=;0

j, n :={ ( j&1�4)?�n,
( j&3�4) ?�n,

j<n�2,
j�n�2,

and

;� j :=;� j, n :=( j&1�2) ?�n,

and define

x0
j :=x0

j, n :=cos ;0
j ; x� j :=x� j, n :=cos ;� j .

Note that

tj (x) :=tj, n(x) :=(x&x0
j )&2 cos2 2n arc cos x+(x&x� j)

&2 sin2 2n arc cos x

is an algebraic polynomial of degree 4n&2 satisfying

min[(x&x0
j )&2, (x&x� j)

&2]�tj (x)�max[(x&x0
j )&2, (x&x� j)

&2].

For j # H we write

dj :=dj, n(b; Y ) :=|
1

&1
tb

j ( y) 6( y) dy,

with b=6(s+1). Then applying Dzjadyk's arguments (see [Dzj, p. 274; S,
Lemma 17.2; or GS, Lemma 4.1], we get for j # H,

dj

6(xj)
>c0h1&2b

j ,

for some constant c0=c0(s), depending only on s. Finally we put

Tj (x) :=Tj, n(x; b; Y ) :=
1
dj
|

x

&1
tb

j ( y) 6( y) dy,
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which are algebraic polynomials of degree �48sn. It is readily seen that

T $j (x) 6(x) 6(xj)�0, x # [&1, 1], (2.2)

and we conclude by proving that

" :
j # H

|/j&Tj |"�c1 , (2.3)

where c1=c1(s) is a constant which depends only on s. Indeed, for all
i=1, ..., s; j # H; and x # [&1, 1] we have

} x& yi

xj& yi }� } x&xj

xj& yi }+1�3 }x&xj

hj }+1<3
|x&xj |+hj

hj
.

Thus,

|T $j (x)|= }6(x)
dj } tb

j (x)�c&1
0 h2b&1

j } 6(x)
6(xj) } tb

j (x)

�3sc&1
0 h2b&1

j \ |x&xj |+hj

hj +
s

max[(x&x0
j )&2b, (x&x� j)

&2b]

�c2h2b&1&s
j ( |x&xj |+hj)

s&2b�c2h2
j ( |x&xj |+hj)

&3,

for some c2=c2(s). Hence, for any j # H and x # [&1, 1], we have

|/j (x)&Tj (x)|= } |
a

x
T $j (u) du }<c2

2
h2

j ( |x&xj |+hj)
&2

where a=&1 if xj�x, and a=1 if xj>x. Therefore

:
j # H

|/j (x)&Tj (x)|�
c2

2
:
n

j=1

h2
j ( |x&xj |+hj)

&2<c1 ,

which is (2.3).

2. Next we show that the polynomial

V(x)=Vn(x, f, Y ) := f (&1)+ :
j # H

( f (xj&1)& f (xj)) Tj (x), (2.4)

of degree �48sn, has the properties

V$(x) 6(x)�0, x # [&1, 1], (2.5)
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and

& f &V&<c3 |(?�n), (2.6)

where c3=c3(s) depends only on s, and for convenience in notation we set
|( } ) :=|.( f, } ). In other words, since Y # As( f ) is arbitrary, then

E (1, s)
48sn ( f )�c3|(?�n). (2.7)

Indeed, we note that since f # 2(1)(Y), we have

( f (xj&1)& f (xj)) 6(xj)�0, j # H,

hence (2.2) implies (2.5).
In order to prove (2.6) we observe that for all j=1, ..., n,

xj&1&xj<
?
n

. \xj&1+xj

2 + ,

whence

| f (xj&1)& f (xj)|�|(?�n),

and (2.3) yields

" :
j # H

( f (xj&1)& f (xj))(Tj&/j)"�c1 |(?�n). (2.8)

Now, for x # (x& , x&&1], &=1, ..., n, we have

S(x) := f (&1)+ :
n

j=1

( f (xj&1)& f (xj)) /j (x)= f (x+&1), (2.9)

therefore

&S& f &�|(?�n). (2.10)

Finally, we have the representation

f (x)&V(x)=( f (x)&S(x))+ :
j # H

( f (xj&1)& f (xj))(/j (x)&Tj (x))

+ :
j � H

( f (xj&1)& f (xj)) /j (x),

in which the second sum has no more than 3s terms, so that it does not
exceed 3s|(?�n). Combining this with (2.8), (2.10), we obtain (2.6) with
c3=c1+1+3s.
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Theorem 1 for n>48s now follows by (2.7), while for n�48s one has

E (1, s)
n ( f )�E (1, s)

0 ( f )�& f & f (0)&�|(2)�c| \ 1
n+1+ . K

3. PROOF OF THEOREM 2.

We begin by setting

gr(x) :=Cr {&(1+x)r�2 log(1+x)
(1+x)r�2

r even
r�3, odd,

(3.1)

where Cr is so chosen that

&.rg (r)
r &=1. (3.2)

Also denote Mr :=&gr&. With \ :=[(r+1)�2], we have

lim
x � &1+

g (\)
r (x)=�, (3.3)

and for j>\,

(&1) j&\ g ( j)
r (x)>0, &1<x<1. (3.4)

Without loss of generality we may assume that n�r&1.
The proof is divided into three different cases: (a) s<r�2s; (b)

max(3, 2s)<r�2s+2; and (c) 1<r�s+1.

(a) Note that in this case \�s<r, so that, in view of (3.3) and (3.4),
there exists x0 # (&1, 1), for which

g (\)
r (x)�n2\(A+Mr), &1<x�x0 . (3.5)

We take Y: &1< ys< } } } < y1<x0 , and let

ls&1(x) :=ls&1(x; g$r ; y1 , ..., ys)

be the Lagrange polynomial of degree not exceeding s&1 interpolating g$r
at the points Y. Define

f :=(&1)s+1&\ (gr&Ls),
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where

Ls(x) :=|
x

&1
ls&1(u) du.

(For a similar construction see Kopotun [K].)
Then

f $(x)=(&1)s+1&\ 6(x)[ y1 , ..., ys , x; g$r]=(&1)s+1&\ 6(x) g (s+1)
r (%)�s !,

for some % # (&1, 1), where [ y1 , ..., ys , x; g] denotes the divided difference
of g at y1 , ..., ys and x. Hence by (3.4), f # 2(1)(Y) and As( f )=[Y]. Also,
since s<r, it follows by (3.2) that &.rf (r)&=1.

Now assume to the contrary that there exists a polynomial
Pn # Pn & 2(1)(Y) such that

& f &Pn&<A,

and put

Qn :=(&1)s+1&\ Pn+Ls .

Then

&gr&Qn&=& f &Pn&,

whence

&Qn&�&Qn& gr&+&gr&<A+Mr ,

which by Markov's inequality implies

&Q(\)
n &<n2\(A+Mr). (3.6)

On the other hand, since \�s, we have for some { # (&1, x0) that

Q (\)
n ({)=(\&1)! [ y1 , ..., y\ ; Q$n]=(\&1)! [ y1 , ..., y\ ; g$r]= g (\)

r (%),

where % # (&1, x0). Note that in the second equality we have used the fact
that g$r( yj)=ls&1( yj) and P$n( yj)=0, j=1, ..., \. By virtue of (3.5),

&Q(\)
n &� g (\)

r (%)�n2\(A+Mr),

contradicting (3.6). This completes the proof of Case a.

(b) In this case 2s+1�r�2s+2 (where the case r&2=1=s is
excluded). Then \=s+1 and, as before, there exists an x0 # (&1, 1) for
which (3.5) holds. Again we take Y : &1< ys< } } } < y1<x0 . Now let

ls+1(x) :=ls+1(x; g$r ; y1 , ..., ys ; x0 , x0)
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be the Lagrange�Hermite polynomial of degree not exceeding s+1 which
interpolates g$r at the points Y and at x0 , and which interpolates gr" at x0 .

We define

f := gr&Ls+2 ,

where

Ls+2(x) :=|
x

&1
ls+1(u) du.

Then

f $(x)=6(x)(x&x0)2 [ y1 , ..., ys , x0 , x0 , x; g$r].

Hence

f $(x)=6(x)(x&x0)2 g(\+2)
r (%)�(\+1)!,

for some % # (&1, 1). By (3.4), we conclude that f # 2(1)(Y) and
As( f )=[Y], and because s+2<r (here is where we have to exclude
r&2=1=s), it follows by virtue of (3.2) that &.rf (r)&=1.

Now, we assume that there exists a polynomial Pn # Pn & 2(1)(Y) such
that

& f &Pn&<A,

and we put

Qn :=Pn+Ls+2 .

Then, as before, we obtain

&Q(\)
n &<n2\(A+Mr). (3.7)

On the other hand, since ls+1 interpolates g$r at the points Y and at x0 ,
and since Pn # 2(1)(Y), we have for some {, % # (&1, x0) that

|Q (\)
n ({)|=(\&1)! [ y1 , ..., ys , x0 : Q$n]

=(\&1)! [ y1 , ..., ys , x0 : ls+1]+
P$n(x0)
6(x0)

�(\&1)! [ y1 , ..., ys , x0 : g$r]

= g (\)
r (%)�n2\(A+Mr).

This contradicts (3.7) and concludes the proof of Case b.
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(c) In this case we need a somewhat different approach. We take
x0 # (&1, 1) to satisfy

| g (r&1)
r (x0)|�n2(r&1)(A+Mr+1), (3.8)

and we put

g~ r(x) :=(&1)r&\ 1
(r&1)! |

x

x0

(x&u)r&1 g (r)
r (u) du, &1�x�1.

Define

f (x) :={g~ r(x),
0,

x�x0

x<x0

. (3.9)

Then, by virtue of (3.2), &.rf (r)&�1. Now we observe that

Tr&1 :=(&1)r&\ gr& g~ r

is the Taylor polynomial of degree r&1 at x0 , of the function (&1)r&\ gr ,
and in particular

T(r&1)
r&1 (x)#(&1)r&\ g (r&1)

r (x0).

Assume to the contrary that there exists a collection Y # As( f ), that is,
Y : &1< ys< } } } < y1�x0 , and a polynomial Pn # Pn & 2(1)(Y) satisfying

& f &Pn&<A,

and set

Qn :=Pn+Tr&1 .

Then, for x0�x�1,

f (x)&Pn(x)= g~ r(x)&Pn(x)=(&1)r&\ gr(x)&Qn(x),

hence

|Qn(x)|�| gr(x)|+| f (x)&Pn(x)|<A+Mr . (3.10)

By virtue of (3.2), it follows that for &1�x<x0 ,

| g~ r(x)|�
1

(r&1) } |
x0

&1

(1+u)r&1

.r(u)
du }<1.
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Thus, for &1�x<x0 ,

|Qn(x)|�|Pn(x)|+| gr(x)|+| g~ r(x)|<A+Mr+1,

which together with (3.10) gives

&Qn &<A+Mr+1

and hence

&Q(r&1)
n &<n2(r&1)(A+Mr+1). (3.11)

On the other hand, for some {, % # (&1, x0),

|Q (r&1)
n ({)|=(r&2)! |[ y1 , ..., yr&1; Q$n]|=(r&2)! |[ y1 , ..., yr&1 ; T $r&1]|

=|T (r&1)
r&1 (%)|=| g (r&1)

r (x0)|�n2(r&1)(A+Mr+1),

contradicting (3.11). Note that here we made use of the fact that r&1�s
and that Pn # 2(1)(Y). This completes Case c and therefore concludes the
proof of our theorem.
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