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Let f be a continuous function on [ —1, 1], which changes its monotonicity finitely
many times in the interval, say s times. We discuss the validity of Jackson-type
estimates for the approximation of f by algebraic polynomials that are comonotone
with it. While we prove the validity of the Jackson-type estimate involving the
Ditzian-Totik modulus of continuity and a constant which depends only on s, we
show by counterexamples that in many cases this is not so, even for functions which
possess locally absolutely continuous derivatives. These counterexamples are given
when there are certain relations between s, the number of changes of monotonicity,
and r, the number of derivatives. For other cases we do have some Jackson-type
estimates and another paper will be devoted to that.  © 1997 Academic Press

1. INTRODUCTION AND MAIN RESULTS

The first Jackson-type estimate in the approximation of a nondecreasing
feC[—1,1] by nondecreasing polynomials was obtained by Lorentz and
Zeller [ LoZ] who proved that

EL”(f)<cw<ﬁnJ1rl>, n=0, (1.1)

where E'V(f) denotes the degree of approximation of f by nondecreasing
algebraic polynomials of degrees <n, ¢ an absolute constant and w(f, 7)
the modulus of continuity of f.
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As usual, we denote by W the space of functions f which possess an
absolutely continuous (r—1)st derivative on [ —1,1] and || < oo,
where

| gl :=esssup{|g(x)[:xe[—1,1]}.

For a nondecreasing /€ W” with r=1, (1.1) yields inequality

I
(n+1)"

EN(f)<c(r) n=r—1 (1.2)

This inequality holds as well for a nondecreasing f'e W', for any r > 2; for
r=2 it is due to Lorentz [ Lo], and for r> 2 it is due to DeVore [ De].

Inequality (1.2) can be extended to the “bigger” space B’, namely, the
space of functions f which possess a focally absolutely continuous (r — 1)st
derivative in (—1, 1), such that

lp’f "l < oo, (1.3)

where ¢(x):=./1 —x%

For a nondecreasing function f'e B” it follows that

lo’f |

E(f)<e(r) TR

n=zr—1. (1.4)

For r=1,2, (14) is due to Leviatan [Le], and for r>2 it is due to
Dzyubenko et al. [ DzLiS].

Now let fe C[ —1,1] change monotonicity finitely many times, say
s> 1, in the interval, and we wish to approximate f/ by polynomials p, € Z,,
the space of polynomials of degree not exceeding n, which are comonotone
with f. To be specific, let s>1 and let Y, be the set of all collections
Y:={y;}i_, of points, —1 <y, <--- <y <l. For YeVY, we set

s

I(x, Y) =[] (x— ),
i=1

and denote by A"(Y) the set of functions fe C[ —1,1] which change
monotonicity at the points y;, and which are nondecreasing in ( y,, 1), that
is, f'is nondecreasing in the intervals (y,, ;, ¥,;) and it is nonincreasing in
(Vajs Vaj—1)-

Note that if feA4(Y), then evidently f’ exists almost everywhere in
(—1,1), and

f(x)(x, Y)=0, ae in(—1,1).
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Conversely, if fe C'(—1,1) and
S () H(x, Y)=0, xe(—1,1),

then fe AV(Y).
Put

Y :=U,Y,.

Then, we call a collection Ye Y, s-admissible for f and write Ye 4,(f), if
YeVY, and fe AV(Y). We write fe 4" if A (f)# &. Note that a func-
tion may belong at the same time to different classes 4" and 4+*? (that
is, with s, #s,).

For YeY and fe C[ —1, 1] we denote

EV(SY) =inf{|f=p,ll:p, ed(Y)n 2} (L5)

For fe A" set

E(9(f):= sup EN(f Y) (1.6)
Ye Ay f)
and
e(nl’s)(f) — inf E(nl)(ﬁ Y). (L.7)
Ye Ay(f)

The first Jackson-type estimates for comonotone polynomial approxima-
tion were obtained independently by Iliev [I] and Newman [N] who
proved that for fe 41,

1
Ef,"”(f)<c(s)w<f, > n=0. (1.8)
n+1
If fe A" A~ W with r =1, then (1.8) yields the inequality
ERf<etn ) AL s, (19)
n (n + 1)’.

This inequality is valid also for fe 4% ~ W", for any r > 2. For r =2 it is
due to Beatson and Leviatan [ BLe], while for r>2 it is due to Gilewicz
and Shevchuk [ GS].

For a function fe A)(Y), where Ye Y, Leviatan [Le] proved that

EV(f, Y)<c(Y)w"’<f, > n=0, (1.10)

n+1



198 LEVIATAN AND SHEVCHUK

where ¢(Y) is a constant depending only on Y, and

?(f, 1)
h

h
‘= sup sup {‘f<x+2 (p(x)> f<x2 f/’(x)>
O<h<t

is a Ditzian—-Totik modulus of continuity.
In Section 2 we will strengthen (1.8) and (1.10) by proving the following

2

:xih(p(x)e[l,l]}

THEOREM 1. If fe A", then

Ey(f) <cls) 7 <f,ni1>, n>0, (1L.11)

where ¢(s) is a constant depending only on s.
For fe 4% ~ B" with r=1, (1.11) yields the inequality

I’/

EI(f)<c(r,s) T

n=r—1l. (1.12)

In a forthcoming article we shall prove (1.12) for fe*n B’, with
r>2s+2. We also conjecture that (1.12) holds for r—2=1=s. On the
other hand, we will prove in the following that for all other cases (1.12) is
false. Indeed, we will show in Section 3 the following

THEOREM 2. Let the constant A >0 be arbitrary and let s=1 and
2<r<2s+2, excluding r —2 =1=s. Then, for any n, there exists a function
f=forn€db B, for which

EN () z e ()= A o). (1.13)

2. PROOF OF THEOREM 1

1. First we need some notation of [ Dzj], [GS], and [S], and we
make use of some arguments therein. Namely, for each j=0, ..., n, we set

X; =X, ,:=cos(jn/n), h;:=x; | —x;,x_;:=1,and x, ., := —1. We fix an

a'rbitrary collection Ye A ( f), and denote I1(x):=1Il(x, Y). Let
Oi:: Oi,n(Y)::(xj+17xj—2)a lf yie[xja xj—l)>
and set

0:=0n;Y):=) O,. (2.1)
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Forj=1,..,nwewrite je H:=H(n, Y)if [x;,x; ;] O=J. Note that if
n>3s, then H # (.
For each j=1, ..., n, we denote

==y S

we set

s .:{(]'—1/4)75/14, Jj<n/2,

P (=34, j=n)2,
and
=B, =(—1/2) n/n,

and define

x)i=x7, =cos f}; X=X, ,:=cos f3,.
Note that

y

(x) :=1; ,(x) :=(x —x}) ~? cos® 2n arc cos x + (x — X;) ~? sin” 2n arc cos x
is an algebraic polynomial of degree 4n — 2 satisfying
min{(x —x?) 7% (x —x;) 7} <t;(x) <max{(x—x7) 2 (x—x;) ?}.

For je H we write

1
dyi=d; (b Y):= | 1](y) (y) dy.

with b =6(s+ 1). Then applying Dzjadyk’s arguments (see [ Dzj, p. 274; S,
Lemma 17.2; or GS, Lemma 4.1], we get for je H,

J > h172b’
m(x,)~ %

J

for some constant ¢, = c(s), depending only on s. Finally we put

1 x>
T)(x):=T), (b Y) 2= [ 1)) HH(y) d.
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which are algebraic polynomials of degree <48sn. It is readily seen that

Ti(x) H(x) H(x;,) >0, xe[—1,1], (2.2)

J

and we conclude by proving that

> =

jeH

<eps (23)

where ¢; =c¢(s) is a constant which depends only on s. Indeed, for all
i=1,..,s jeH;and xe[ —1, 1] we have

xX—y; X—X; +1<3‘x—xj +1<3|x—xj|+hj.
X; —y, X;— h; h;
Thus,
, I(x) g )],
70 ’ d; t‘f(X)gco lh‘?b 1 H(x;) [‘;(X)
[x —2x;| +h\*

h

J

<eh? T (x—x ]+ ) TP < ek (Ix— x| 4+ k) 7,

for some ¢, = c,(s). Hence, for any je H and xe[ —1, 1], we have

C
L (x)—=T;(x)| = T'(u) du <?2hf(|x—xj|—sz)*2
where a= —1 if x;<x, and a=1 if x;> x. Therefore
C n
Z |Xj(x)7 j 52 Z h (Jx— X; |+hj)_2<cls

jeH
which is (2.3).
2. Next we show that the polynomial

Vx)=V,(x, £ Y):i=f(=D+ 3 (flx; o) = f(x) Ti(x),  (24)

jeH
of degree <48sn, has the properties

V'(x) (x)=0, xe[—1,1], (2.5)
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and
If =Vl <cso(n/n),

201

(2.6)

where c¢; = ¢5(s) depends only on s, and for convenience in notation we set

o(-):=w?(f, ). In other words, since Ye A, f) is arbitrary, then

Ega)(f) < cso(n/n).
Indeed, we note that since /e 4V(Y), we have
(f(xj—l)_f(xj)) H(xj)>ov JEH,

hence (2.2) implies (2.5).
In order to prove (2.6) we observe that for all j=1, .., n,

T X;_1+X;
j—1 J
le_xj<n§0< 2 >’

whence

|f(x;—1) = f(x)| S o(z/n),
and (2.3) yields

Z (f(xjfl)_f(xj))(T/'_Xj)

jeH

< c w(n/n).

Now, for xe(x,,x,_;],v=1, .., n, we have

n

S(x) = f=D+ X (f(x; 1) = f(x)) 1;(x) = flx,, ),

Jj=1

therefore
S — fll < w(n/n).

Finally, we have the representation

(2.7)

(2.8)

(2.9)

(2.10)

Jx) = V(x) = (f(x) = S(x) + X (fx;-1) = f(x)(,(x) = T;(x))

JjeH

+ 2 (S0 = f(x)) 15(x),

JEH

in which the second sum has no more than 3s terms, so that it does not
exceed 3sw(m/n). Combining this with (2.8), (2.10), we obtain (2.6) with

cz=c+1+3s.
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Theorem 1 for n>48s now follows by (2.7), while for n <48s one has

1
E(N<KENN <) f—A0)] <o2)<co <> 1
n+1

3. PROOF OF THEOREM 2.

We begin by setting

g(x):=C, { (Iil;) ,/xz)r/z log(1 +x) ' ;V‘;“O w (3.1)
where C, is so chosen that
lp"g” | =1. (3.2)
Also denote M, :=|g,|. With p:=[(r+1)/2], we have
lim g!")(x)= oo, (3.3)
xo — 14
and for j> p,
(—1)/~7g(x)>0, —l<x<l (34)

Without loss of generality we may assume that n>r — 1.
The proof is divided into three different cases: (a) s<r<2s; (b)
max(3,2s) <r<2s+2;and (c) l <r<s+ 1.

(a) Note that in this case p < s <r, so that, in view of (3.3) and (3.4),
there exists x, € (—1, 1), for which

gP(x)=n*(A+M,), —1<x<x,. (3.5)
We take V@ —1 <y, < --- <y, <Xy, and let
/sfl(x) ::fsfl(x; g,rn Vs e ys)

be the Lagrange polynomial of degree not exceeding s — | interpolating g’
at the points Y. Define

fi=(=1y"1"" (g, — L),
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where

Ly(x):= fxl /. (u) du.

(For a similar construction see Kopotun [K1].)
Then

S = (=1 P 1 703 g1 = (=17 () g D(0))s1,

for some 6 e(—1, 1), where [ y,, ..., y,, x; g] denotes the divided difference
of g at yy, .., », and x. Hence by (3.4), fe 4"(Y) and A,(f)={Y}. Also,
since s <r, it follows by (3.2) that ||@"f | = 1.

Now assume to the contrary that there exists a polynomial
P,e? nAV(Y) such that

If =P, <A,
and put
Q,:=(=1)*""7pP +L,.
Then
lg,— Q. =1f=P,l,
whence

10.1<10,— gl +lg I <A+M,
which by Markov’s inequality implies
10| <n*(A+M,). (3.6)
On the other hand, since p <s, we have for some e (—1, x,) that
0D =(p=D [ 3130 7,3 Q1 =(p =D [ 31, ¥, 811 = 87(0),

where 8 € (—1, x,). Note that in the second equality we have used the fact
that g\(y;)=7,_1(y;) and P)(y;) =0, j=1, .., p. By virtue of (3.5),

10, = &7(0) = n* (A + M,),

contradicting (3.6). This completes the proof of Case a.

(b) In this case 2s+1<r<2s+2 (where the case r—2=1=ys is
excluded). Then p=s5+1 and, as before, there exists an x,e(—1, 1) for
which (3.5) holds. Again we take Y: —1<y . < --- <y, <x,. Now let

Lo p1(X) =0 1(X5 €05 Vs o Vs Xo» Xo)
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be the Lagrange—Hermite polynomial of degree not exceeding s+ 1 which
interpolates g/ at the points Y and at x,, and which interpolates g, at x,.
We define

f:: g, — LS+27
where
Lowalx)i= | /o) du
Then
LX) =TI(x)(x = X0)> [ Y1, s Py X0 X0, X5 €11
Hence

J'(x)=I(x)(x —x0)* g” 2(0)/(p + 1),

for some Oe(—1,1). By (34), we conclude that feAY(Y) and
A(f)={Y}, and because s+2<r (here is where we have to exclude
r—2=1=ys), it follows by virtue of (3.2) that |@"f"| = 1.

Now, we assume that there exists a polynomial P, € 2, n A"(Y) such
that

If =P, <A,
and we put
Q,=P,+L,,,.
Then, as before, we obtain
1O || <n?*(A+ M,). (3.7)

On the other hand, since 7, , interpolates g, at the points Y and at x,,
and since P, € A'Y(Y), we have for some 7, 0e(—1, x,) that

10(D) | =(p =D [ Y150 Vs» Xo: O]
P(x,)
II(x,)

:(p_l)' [yla-na Vs xO:/s+l:]+

Z(p—D [ 1y Vsr X0: &0 ]
— (0> n A+ M),

This contradicts (3.7) and concludes the proof of Case b.
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(c) In this case we need a somewhat different approach. We take
xo €(—1,1) to satisfy

lg\ D(xo)l =" (A + M, +1), (3.8)
and we put
N o 1 x 1
§x) =~ [ (W e de —1<x<]
r—1)J 5
Define
gr(x)s x>x0
= . 39
f(x) {0’ . (39)

Then, by virtue of (3.2), [[¢’f"”| < 1. Now we observe that
Trfl ::(_1)"7/) gr_g~r

is the Taylor polynomial of degree r — 1 at x,, of the function (—1)""” g,,
and in particular
TP = (=17 g xo)

r—1

Assume to the contrary that there exists a collection Ye A,(f), that is,
Y: —l<y,<--- <y, <Xy, and a polynomial P, € Z, n AV(Y) satisfying

If =P, <A,
and set
Q,=P,+T,_,.
Then, for x,<x <1,
J(xX) =P (x) =g (x) = P,(x) =(=1)"7 g(x) = Q,(x),
hence
10, < [g(xX)[ + [ f(x)=P,(x)| <A+ M,. (3.10)
By virtue of (3.2), it follows that for — 1 <x <x,,

1
(r—1)

fxo (1+u) !

2.x)1 < M

du‘<1.
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Thus, for —1 < x < Xx,,
10, <P, (x)| + (X)) +18(x)| <A+ M, +]1,
which together with (3.10) gives
10, <A+ M,+1
and hence
[QU =V <n® = (A+ M, +1). (3.11)
On the other hand, for some 7, e (—1, x,),

10V = (r =2 1o ¥y 13 QI = (=2 L1 3y 13 T3]
= ITYS00)] = g0V xrg)| 202~ DA+ M, + 1),

r—1

contradicting (3.11). Note that here we made use of the fact that r — 1 <s
and that P, e AV(Y). This completes Case ¢ and therefore concludes the
proof of our theorem.
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