Some Positive Results and Counterexamples in Comonotone Approximation

D. Leviatan
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
and
I. A. Shevchuk
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 252601, Ukraine Communicated by M. von Golitschek
Received September 11, 1995; accepted April 10, 1996

Let f be a continuous function on $[-1,1]$, which changes its monotonicity finitely many times in the interval, say s times. We discuss the validity of Jackson-type estimates for the approximation of f by algebraic polynomials that are comonotone with it. While we prove the validity of the Jackson-type estimate involving the Ditzian-Totik modulus of continuity and a constant which depends only on s, we show by counterexamples that in many cases this is not so, even for functions which possess locally absolutely continuous derivatives. These counterexamples are given when there are certain relations between s, the number of changes of monotonicity, and r, the number of derivatives. For other cases we do have some Jackson-type estimates and another paper will be devoted to that. © 1997 Academic Press

1. INTRODUCTION AND MAIN RESULTS

The first Jackson-type estimate in the approximation of a nondecreasing $f \in C[-1,1]$ by nondecreasing polynomials was obtained by Lorentz and Zeller [LoZ] who proved that

$$
\begin{equation*}
E_{n}^{(1)}(f) \leqslant c \omega\left(f, \frac{1}{n+1}\right), \quad n \geqslant 0, \tag{1.1}
\end{equation*}
$$

where $E_{n}^{(1)}(f)$ denotes the degree of approximation of f by nondecreasing algebraic polynomials of degrees $\leqslant n, c$ an absolute constant and $\omega(f, t)$ the modulus of continuity of f.

As usual, we denote by W^{r} the space of functions f which possess an absolutely continuous $(r-1)$ st derivative on $[-1,1]$ and $\left\|f^{(r)}\right\|<\infty$, where

$$
\|g\|:=\operatorname{esssup}\{|g(x)|: x \in[-1,1]\} .
$$

For a nondecreasing $f \in W^{r}$ with $r=1$, (1.1) yields inequality

$$
\begin{equation*}
E_{n}^{(1)}(f) \leqslant c(r) \frac{\left\|f^{(r)}\right\|}{(n+1)^{r}}, \quad n \geqslant r-1 . \tag{1.2}
\end{equation*}
$$

This inequality holds as well for a nondecreasing $f \in W^{r}$, for any $r \geqslant 2$; for $r=2$ it is due to Lorentz [Lo], and for $r>2$ it is due to DeVore [De].

Inequality (1.2) can be extended to the "bigger" space B^{r}, namely, the space of functions f which possess a focally absolutely continuous $(r-1)$ st derivative in $(-1,1)$, such that

$$
\begin{equation*}
\left\|\varphi^{r} f^{(r)}\right\|<\infty, \tag{1.3}
\end{equation*}
$$

where $\varphi(x):=\sqrt{1-x^{2}}$.
For a nondecreasing function $f \in B^{r}$ it follows that

$$
\begin{equation*}
E_{n}^{(1)}(f) \leqslant c(r) \frac{\left\|\varphi^{r} f^{(r)}\right\|}{(n+1)^{r}}, \quad n \geqslant r-1 . \tag{1.4}
\end{equation*}
$$

For $r=1,2$, (1.4) is due to Leviatan [Le], and for $r>2$ it is due to Dzyubenko et al. [DzLiS].

Now let $f \in C[-1,1]$ change monotonicity finitely many times, say $s \geqslant 1$, in the interval, and we wish to approximate f by polynomials $p_{n} \in \mathscr{P}_{n}$, the space of polynomials of degree not exceeding n, which are comonotone with f. To be specific, let $s \geqslant 1$ and let \mathbb{Y}_{s} be the set of all collections $Y:=\left\{y_{i}\right\}_{i=1}^{s}$ of points, $-1<y_{s}<\cdots<y_{1}<1$. For $Y \in \mathbb{Y}_{s}$ we set

$$
\Pi(x, Y):=\prod_{i=1}^{s}\left(x-y_{i}\right)
$$

and denote by $\Delta^{(1)}(Y)$ the set of functions $f \in C[-1,1]$ which change monotonicity at the points y_{i}, and which are nondecreasing in $\left(y_{1}, 1\right)$, that is, f is nondecreasing in the intervals $\left(y_{2 j+1}, y_{2 j}\right)$ and it is nonincreasing in $\left(y_{2 j}, y_{2 j-1}\right)$.

Note that if $f \in \Delta^{(1)}(Y)$, then evidently f^{\prime} exists almost everywhere in $(-1,1)$, and

$$
f^{\prime}(x) \Pi(x, Y) \geqslant 0, \quad \text { a.e. } \quad \text { in }(-1,1) .
$$

Conversely, if $f \in C^{1}(-1,1)$ and

$$
f^{\prime}(x) \Pi(x, Y) \geqslant 0, \quad x \in(-1,1)
$$

then $f \in \Delta^{(1)}(Y)$.
Put

$$
\mathbb{Y}:=\bigcup_{s} \mathbb{Y}_{s}
$$

Then, we call a collection $Y \in \mathbb{Y}, s$-admissible for f and write $Y \in A_{s}(f)$, if $Y \in \mathbb{Y}_{s}$ and $f \in \Delta^{(1)}(Y)$. We write $f \in \Delta^{(1, s)}$, if $A_{s}(f) \neq \varnothing$. Note that a function may belong at the same time to different classes $\Delta^{\left(1, s_{1}\right)}$ and $\Delta^{\left(1, s_{2}\right)}$ (that is, with $s_{1} \neq s_{2}$).

For $Y \in \mathbb{Y}$ and $f \in C[-1,1]$ we denote

$$
\begin{equation*}
E_{n}^{(1)}(f, Y):=\inf \left\{\left\|f-p_{n}\right\|: p_{n} \in \Delta^{(1)}(Y) \cap \mathscr{P}_{n}\right\} \tag{1.5}
\end{equation*}
$$

For $f \in \Delta^{(1, s)}$ set

$$
\begin{equation*}
E_{n}^{(1, s)}(f):=\sup _{Y \in A_{s}(f)} E_{n}^{(1)}(f, Y) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n}^{(1, s)}(f):=\inf _{Y \in A_{s}(f)} E_{n}^{(1)}(f, Y) . \tag{1.7}
\end{equation*}
$$

The first Jackson-type estimates for comonotone polynomial approximation were obtained independently by Iliev [I] and Newman [N] who proved that for $f \in \Delta^{(1, s)}$,

$$
\begin{equation*}
E_{n}^{(1, s)}(f) \leqslant c(s) \omega\left(f, \frac{1}{n+1}\right), \quad n \geqslant 0 . \tag{1.8}
\end{equation*}
$$

If $f \in \Delta^{(1, s)} \cap W^{r}$ with $r=1$, then (1.8) yields the inequality

$$
\begin{equation*}
E_{n}^{(1, s)}(f) \leqslant c(r, s) \frac{\left\|f^{(r)}\right\|}{(n+1)^{r}}, \quad n \geqslant r-1 . \tag{1.9}
\end{equation*}
$$

This inequality is valid also for $f \in \Delta^{(1, s)} \cap W^{r}$, for any $r \geqslant 2$. For $r=2$ it is due to Beatson and Leviatan [BLe], while for $r>2$ it is due to Gilewicz and Shevchuk [GS].

For a function $f \in \Delta^{(1)}(Y)$, where $Y \in \mathbb{Y}$, Leviatan [Le] proved that

$$
\begin{equation*}
E_{n}^{(1)}(f, Y) \leqslant c(Y) \omega^{\varphi}\left(f, \frac{1}{n+1}\right), \quad n \geqslant 0 \tag{1.10}
\end{equation*}
$$

where $c(Y)$ is a constant depending only on Y, and

$$
\begin{aligned}
& \omega^{\varphi}(f, t) \\
& \quad:=\sup _{0<h \leqslant t} \sup \left\{\left|f\left(x+\frac{h}{2} \varphi(x)\right)-f\left(x-\frac{h}{2} \varphi(x)\right)\right|: x \pm \frac{h}{2} \varphi(x) \in[-1,1]\right\}
\end{aligned}
$$

is a Ditzian-Totik modulus of continuity.
In Section 2 we will strengthen (1.8) and (1.10) by proving the following
Theorem 1. If $f \in \Delta^{(1, s)}$, then

$$
\begin{equation*}
E_{n}^{(1, s)}(f) \leqslant c(s) \omega^{\varphi}\left(f, \frac{1}{n+1}\right), \quad n \geqslant 0 \tag{1.11}
\end{equation*}
$$

where $c(s)$ is a constant depending only on s.
For $f \in \Delta^{(1, s)} \cap B^{r}$ with $r=1$, (1.11) yields the inequality

$$
\begin{equation*}
E_{n}^{(1, s)}(f) \leqslant c(r, s) \frac{\left\|\varphi^{r} f^{(r)}\right\|}{(n+1)^{r}}, \quad n \geqslant r-1 . \tag{1.12}
\end{equation*}
$$

In a forthcoming article we shall prove (1.12) for $f \in^{(1, s)} \cap B^{r}$, with $r>2 s+2$. We also conjecture that (1.12) holds for $r-2=1=s$. On the other hand, we will prove in the following that for all other cases (1.12) is false. Indeed, we will show in Section 3 the following

Theorem 2. Let the constant $A>0$ be arbitrary and let $s \geqslant 1$ and $2 \leqslant r \leqslant 2 s+2$, excluding $r-2=1=s$. Then, for any n, there exists a function $f=f_{s, r, n} \in \Delta^{(1, s)} \cap B^{r}$, for which

$$
\begin{equation*}
E_{n}^{(1, s)}(f) \geqslant e_{n}^{(1, s)}(f) \geqslant A\left\|\varphi^{r} f^{(r)}\right\| . \tag{1.13}
\end{equation*}
$$

2. PROOF OF THEOREM 1

1. First we need some notation of [Dzj], [GS], and [S], and we make use of some arguments therein. Namely, for each $j=0, \ldots$, n, we set $x_{j}:=x_{j, n}:=\cos (j \pi / n), h_{j}:=x_{j-1}-x_{j}, x_{-1}:=1$, and $x_{n+1}:=-1$. We fix an arbitrary collection $Y \in A_{s}(f)$, and denote $\Pi(x):=\Pi(x, Y)$. Let

$$
O_{i}:=O_{i, n}(Y):=\left(x_{j+1}, x_{j-2}\right), \quad \text { if } \quad y_{i} \in\left[x_{j}, x_{j-1}\right),
$$

and set

$$
\begin{equation*}
O:=O(n ; Y):=\bigcup_{i=1}^{s} O_{i} . \tag{2.1}
\end{equation*}
$$

For $j=1, \ldots, n$ we write $j \in H:=H(n, Y)$ if $\left[x_{j}, x_{j-1}\right] \cap O=\varnothing$. Note that if $n>3 s$, then $H \neq \varnothing$.

For each $j=1, \ldots, n$, we denote

$$
\chi_{j}(x):=\chi_{j, n}(x):= \begin{cases}0, & x \leqslant x_{j} \\ 1, & x>x_{j}\end{cases}
$$

we set

$$
\beta_{j}^{0}:=\beta_{j, n}^{0}:= \begin{cases}(j-1 / 4) \pi / n, & j<n / 2, \\ (j-3 / 4) \pi / n, & j \geqslant n / 2,\end{cases}
$$

and

$$
\bar{\beta}_{j}:=\bar{\beta}_{j, n}:=(j-1 / 2) \pi / n,
$$

and define

$$
x_{j}^{0}:=x_{j, n}^{0}:=\cos \beta_{j}^{0} ; \quad \bar{x}_{j}:=\bar{x}_{j, n}:=\cos \bar{\beta}_{j} .
$$

Note that
$t_{j}(x):=t_{j, n}(x):=\left(x-x_{j}^{0}\right)^{-2} \cos ^{2} 2 n \arccos x+\left(x-\bar{x}_{j}\right)^{-2} \sin ^{2} 2 n \arccos x$ is an algebraic polynomial of degree $4 n-2$ satisfying

$$
\min \left\{\left(x-x_{j}^{0}\right)^{-2},\left(x-\bar{x}_{j}\right)^{-2}\right\} \leqslant t_{j}(x) \leqslant \max \left\{\left(x-x_{j}^{0}\right)^{-2},\left(x-\bar{x}_{j}\right)^{-2}\right\} .
$$

For $j \in H$ we write

$$
d_{j}:=d_{j, n}(b ; Y):=\int_{-1}^{1} t_{j}^{b}(y) \Pi(y) d y,
$$

with $b=6(s+1)$. Then applying Dzjadyk's arguments (see [Dzj, p. 274; S, Lemma 17.2; or GS, Lemma 4.1], we get for $j \in H$,

$$
\frac{d_{j}}{\Pi\left(x_{j}\right)}>c_{0} h_{j}^{1-2 b}
$$

for some constant $c_{0}=c_{0}(s)$, depending only on s. Finally we put

$$
T_{j}(x):=T_{j, n}(x ; b ; Y):=\frac{1}{d_{j}} \int_{-1}^{x} t_{j}^{b}(y) \Pi(y) d y
$$

which are algebraic polynomials of degree $\leqslant 48 \mathrm{sn}$. It is readily seen that

$$
\begin{equation*}
T_{j}^{\prime}(x) \Pi(x) \Pi\left(x_{j}\right) \geqslant 0, \quad x \in[-1,1] \tag{2.2}
\end{equation*}
$$

and we conclude by proving that

$$
\begin{equation*}
\left\|\sum_{j \in H}\left|\chi_{j}-T_{j}\right|\right\| \leqslant c_{1}, \tag{2.3}
\end{equation*}
$$

where $c_{1}=c_{1}(s)$ is a constant which depends only on s. Indeed, for all $i=1, \ldots, s ; j \in H$; and $x \in[-1,1]$ we have

$$
\left|\frac{x-y_{i}}{x_{j}-y_{i}}\right| \leqslant\left|\frac{x-x_{j}}{x_{j}-y_{i}}\right|+1 \leqslant 3\left|\frac{x-x_{j}}{h_{j}}\right|+1<3 \frac{\left|x-x_{j}\right|+h_{j}}{h_{j}} .
$$

Thus,

$$
\begin{aligned}
\left|T_{j}^{\prime}(x)\right| & =\left|\frac{\Pi(x)}{d_{j}}\right| t_{j}^{b}(x) \leqslant c_{0}^{-1} h_{j}^{2 b-1}\left|\frac{\Pi(x)}{\Pi\left(x_{j}\right)}\right| t_{j}^{b}(x) \\
& \leqslant 3^{s} c_{0}^{-1} h_{j}^{2 b-1}\left(\frac{\left|x-x_{j}\right|+h_{j}}{h_{j}}\right)^{s} \max \left\{\left(x-x_{j}^{0}\right)^{-2 b},\left(x-\bar{x}_{j}\right)^{-2 b}\right\} \\
& \leqslant c_{2} h_{j}^{2 b-1-s}\left(\left|x-x_{j}\right|+h_{j}\right)^{s-2 b} \leqslant c_{2} h_{j}^{2}\left(\left|x-x_{j}\right|+h_{j}\right)^{-3},
\end{aligned}
$$

for some $c_{2}=c_{2}(s)$. Hence, for any $j \in H$ and $x \in[-1,1]$, we have

$$
\left|\chi_{j}(x)-T_{j}(x)\right|=\left|\int_{x}^{a} T_{j}^{\prime}(u) d u\right|<\frac{c_{2}}{2} h_{j}^{2}\left(\left|x-x_{j}\right|+h_{j}\right)^{-2}
$$

where $a=-1$ if $x_{j} \leqslant x$, and $a=1$ if $x_{j}>x$. Therefore

$$
\sum_{j \in H}\left|\chi_{j}(x)-T_{j}(x)\right| \leqslant \frac{c_{2}}{2} \sum_{j=1}^{n} h_{j}^{2}\left(\left|x-x_{j}\right|+h_{j}\right)^{-2}<c_{1},
$$

which is (2.3).
2. Next we show that the polynomial

$$
\begin{equation*}
V(x)=V_{n}(x, f, Y):=f(-1)+\sum_{j \in H}\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right) T_{j}(x), \tag{2.4}
\end{equation*}
$$

of degree $\leqslant 48 s n$, has the properties

$$
\begin{equation*}
V^{\prime}(x) \Pi(x) \geqslant 0, \quad x \in[-1,1] \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f-V\|<c_{3} \omega(\pi / n) \tag{2.6}
\end{equation*}
$$

where $c_{3}=c_{3}(s)$ depends only on s, and for convenience in notation we set $\omega(\cdot):=\omega^{\varphi}(f, \cdot)$. In other words, since $Y \in A_{s}(f)$ is arbitrary, then

$$
\begin{equation*}
E_{48 s n}^{(1, s)}(f) \leqslant c_{3} \omega(\pi / n) \tag{2.7}
\end{equation*}
$$

Indeed, we note that since $f \in \Delta^{(1)}(Y)$, we have

$$
\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right) \Pi\left(x_{j}\right) \geqslant 0, \quad j \in H
$$

hence (2.2) implies (2.5).
In order to prove (2.6) we observe that for all $j=1, \ldots, n$,

$$
x_{j-1}-x_{j}<\frac{\pi}{n} \varphi\left(\frac{x_{j-1}+x_{j}}{2}\right)
$$

whence

$$
\left|f\left(x_{j-1}\right)-f\left(x_{j}\right)\right| \leqslant \omega(\pi / n)
$$

and (2.3) yields

$$
\begin{equation*}
\left\|\sum_{j \in H}\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right)\left(T_{j}-\chi_{j}\right)\right\| \leqslant c_{1} \omega(\pi / n) \tag{2.8}
\end{equation*}
$$

Now, for $x \in\left(x_{v}, x_{v-1}\right], v=1, \ldots, n$, we have

$$
\begin{equation*}
S(x):=f(-1)+\sum_{j=1}^{n}\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right) \chi_{j}(x)=f\left(x_{\mu-1}\right) \tag{2.9}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\|S-f\| \leqslant \omega(\pi / n) \tag{2.10}
\end{equation*}
$$

Finally, we have the representation

$$
\begin{aligned}
f(x)-V(x)= & (f(x)-S(x))+\sum_{j \in H}\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right)\left(\chi_{j}(x)-T_{j}(x)\right) \\
& +\sum_{j \notin H}\left(f\left(x_{j-1}\right)-f\left(x_{j}\right)\right) \chi_{j}(x)
\end{aligned}
$$

in which the second sum has no more than $3 s$ terms, so that it does not exceed $3 s \omega(\pi / n)$. Combining this with (2.8), (2.10), we obtain (2.6) with $c_{3}=c_{1}+1+3 s$.

Theorem 1 for $n>48 s$ now follows by (2.7), while for $n \leqslant 48 s$ one has

$$
E_{n}^{(1, s)}(f) \leqslant E_{0}^{(1, s)}(f) \leqslant\|f-f(0)\| \leqslant \omega(2) \leqslant c \omega\left(\frac{1}{n+1}\right)
$$

3. PROOF OF THEOREM 2.

We begin by setting

$$
g_{r}(x):=C_{r} \begin{cases}-(1+x)^{r / 2} \log (1+x) & r \text { even } \tag{3.1}\\ (1+x)^{r / 2} & r \geqslant 3, \text { odd }\end{cases}
$$

where C_{r} is so chosen that

$$
\begin{equation*}
\left\|\varphi^{r} g_{r}^{(r)}\right\|=1 \tag{3.2}
\end{equation*}
$$

Also denote $M_{r}:=\left\|g_{r}\right\|$. With $\rho:=[(r+1) / 2]$, we have

$$
\begin{equation*}
\lim _{x \rightarrow-1+} g_{r}^{(\rho)}(x)=\infty \tag{3.3}
\end{equation*}
$$

and for $j>\rho$,

$$
\begin{equation*}
(-1)^{j-\rho} g_{r}^{(j)}(x)>0, \quad-1<x<1 . \tag{3.4}
\end{equation*}
$$

Without loss of generality we may assume that $n \geqslant r-1$.
The proof is divided into three different cases: (a) $s<r \leqslant 2 s$; (b) $\max (3,2 s)<r \leqslant 2 s+2$; and (c) $1<r \leqslant s+1$.
(a) Note that in this case $\rho \leqslant s<r$, so that, in view of (3.3) and (3.4), there exists $x_{0} \in(-1,1)$, for which

$$
\begin{equation*}
g_{r}^{(\rho)}(x) \geqslant n^{2 \rho}\left(A+M_{r}\right), \quad-1<x \leqslant x_{0} . \tag{3.5}
\end{equation*}
$$

We take Y : $-1<y_{s}<\cdots<y_{1}<x_{0}$, and let

$$
\ell_{s-1}(x):=\ell_{s-1}\left(x ; g_{r}^{\prime} ; y_{1}, \ldots, y_{s}\right)
$$

be the Lagrange polynomial of degree not exceeding $s-1$ interpolating g_{r}^{\prime} at the points Y. Define

$$
f:=(-1)^{s+1-\rho}\left(g_{r}-L_{s}\right),
$$

where

$$
L_{s}(x):=\int_{-1}^{x} \ell_{s-1}(u) d u
$$

(For a similar construction see Kopotun [K].)
Then
$f^{\prime}(x)=(-1)^{s+1-\rho} \Pi(x)\left[y_{1}, \ldots, y_{s}, x ; g_{r}^{\prime}\right]=(-1)^{s+1-\rho} \Pi(x) g_{r}^{(s+1)}(\theta) / s!$,
for some $\theta \in(-1,1)$, where $\left[y_{1}, \ldots, y_{s}, x ; g\right]$ denotes the divided difference of g at y_{1}, \ldots, y_{s} and x. Hence by (3.4), $f \in \Delta^{(1)}(Y)$ and $A_{s}(f)=\{Y\}$. Also, since $s<r$, it follows by (3.2) that $\left\|\varphi^{r} f^{(r)}\right\|=1$.

Now assume to the contrary that there exists a polynomial $P_{n} \in \mathscr{P}_{n} \cap \Delta^{(1)}(Y)$ such that

$$
\left\|f-P_{n}\right\|<A,
$$

and put

$$
Q_{n}:=(-1)^{s+1-\rho} P_{n}+L_{s} .
$$

Then

$$
\left\|g_{r}-Q_{n}\right\|=\left\|f-P_{n}\right\|,
$$

whence

$$
\left\|Q_{n}\right\| \leqslant\left\|Q_{n}-g_{r}\right\|+\left\|g_{r}\right\|<A+M_{r},
$$

which by Markov's inequality implies

$$
\begin{equation*}
\left\|Q_{n}^{(\rho)}\right\|<n^{2 \rho}\left(A+M_{r}\right) . \tag{3.6}
\end{equation*}
$$

On the other hand, since $\rho \leqslant s$, we have for some $\tau \in\left(-1, x_{0}\right)$ that

$$
Q_{n}^{(\rho)}(\tau)=(\rho-1)!\left[y_{1}, \ldots, y_{\rho} ; Q_{n}^{\prime}\right]=(\rho-1)!\left[y_{1}, \ldots, y_{\rho} ; g_{r}^{\prime}\right]=g_{r}^{(\rho)}(\theta),
$$

where $\theta \in\left(-1, x_{0}\right)$. Note that in the second equality we have used the fact that $g_{r}^{\prime}\left(y_{j}\right)=\ell_{s-1}\left(y_{j}\right)$ and $P_{n}^{\prime}\left(y_{j}\right)=0, j=1, \ldots, \rho$. By virtue of (3.5),

$$
\left\|Q_{n}^{(\rho)}\right\| \geqslant g_{r}^{(\rho)}(\theta) \geqslant n^{2 \rho}\left(A+M_{r}\right)
$$

contradicting (3.6). This completes the proof of Case a.
(b) In this case $2 s+1 \leqslant r \leqslant 2 s+2$ (where the case $r-2=1=s$ is excluded). Then $\rho=s+1$ and, as before, there exists an $x_{0} \in(-1,1)$ for which (3.5) holds. Again we take $Y:-1<y_{s}<\cdots<y_{1}<x_{0}$. Now let

$$
\ell_{s+1}(x):=\ell_{s+1}\left(x ; g_{r}^{\prime} ; y_{1}, \ldots, y_{s} ; x_{0}, x_{0}\right)
$$

be the Lagrange-Hermite polynomial of degree not exceeding $s+1$ which interpolates g_{r}^{\prime} at the points Y and at x_{0}, and which interpolates $g_{r}^{\prime \prime}$ at x_{0}. We define

$$
f:=g_{r}-L_{s+2},
$$

where

$$
L_{s+2}(x):=\int_{-1}^{x} \ell_{s+1}(u) d u .
$$

Then

$$
f^{\prime}(x)=\Pi(x)\left(x-x_{0}\right)^{2}\left[y_{1}, \ldots, y_{s}, x_{0}, x_{0}, x ; g_{r}^{\prime}\right] .
$$

Hence

$$
f^{\prime}(x)=\Pi(x)\left(x-x_{0}\right)^{2} g_{r}^{(\rho+2)}(\theta) /(\rho+1)!,
$$

for some $\theta \in(-1,1)$. By (3.4), we conclude that $f \in \Delta^{(1)}(Y)$ and $A_{s}(f)=\{Y\}$, and because $s+2<r$ (here is where we have to exclude $r-2=1=s$), it follows by virtue of (3.2) that $\left\|\varphi^{r} f^{(r)}\right\|=1$.

Now, we assume that there exists a polynomial $P_{n} \in \mathscr{P}_{n} \cap \Delta^{(1)}(Y)$ such that

$$
\left\|f-P_{n}\right\|<A
$$

and we put

$$
Q_{n}:=P_{n}+L_{s+2}
$$

Then, as before, we obtain

$$
\begin{equation*}
\left\|Q_{n}^{(\rho)}\right\|<n^{2 \rho}\left(A+M_{r}\right) . \tag{3.7}
\end{equation*}
$$

On the other hand, since ℓ_{s+1} interpolates g_{r}^{\prime} at the points Y and at x_{0}, and since $P_{n} \in \Delta^{(1)}(Y)$, we have for some $\tau, \theta \in\left(-1, x_{0}\right)$ that

$$
\begin{aligned}
\left|Q_{n}^{(\rho)}(\tau)\right| & =(\rho-1)!\left[y_{1}, \ldots, y_{s}, x_{0}: Q_{n}^{\prime}\right] \\
& =(\rho-1)!\left[y_{1}, \ldots, y_{s}, x_{0}: \ell_{s+1}\right]+\frac{P_{n}^{\prime}\left(x_{0}\right)}{\Pi\left(x_{0}\right)} \\
& \geqslant(\rho-1)!\left[y_{1}, \ldots, y_{s}, x_{0}: g_{r}^{\prime}\right] \\
& =g_{r}^{(\rho)}(\theta) \geqslant n^{2 \rho}\left(A+M_{r}\right) .
\end{aligned}
$$

This contradicts (3.7) and concludes the proof of Case b.
(c) In this case we need a somewhat different approach. We take $x_{0} \in(-1,1)$ to satisfy

$$
\begin{equation*}
\left|g_{r}^{(r-1)}\left(x_{0}\right)\right| \geqslant n^{2(r-1)}\left(A+M_{r}+1\right), \tag{3.8}
\end{equation*}
$$

and we put

$$
\tilde{g}_{r}(x):=(-1)^{r-\rho} \frac{1}{(r-1)!} \int_{x_{0}}^{x}(x-u)^{r-1} g_{r}^{(r)}(u) d u, \quad-1 \leqslant x \leqslant 1 .
$$

Define

$$
f(x):=\left\{\begin{array}{ll}
\tilde{g}_{r}(x), & x \geqslant x_{0} \tag{3.9}\\
0, & x<x_{0}
\end{array} .\right.
$$

Then, by virtue of (3.2), $\left\|\varphi^{r} f^{(r)}\right\| \leqslant 1$. Now we observe that

$$
T_{r-1}:=(-1)^{r-\rho} g_{r}-\tilde{g}_{r}
$$

is the Taylor polynomial of degree $r-1$ at x_{0}, of the function $(-1)^{r-\rho} g_{r}$, and in particular

$$
T_{r-1}^{(r-1)}(x) \equiv(-1)^{r-\rho} g_{r}^{(r-1)}\left(x_{0}\right) .
$$

Assume to the contrary that there exists a collection $Y \in A_{s}(f)$, that is, $Y:-1<y_{s}<\cdots<y_{1} \leqslant x_{0}$, and a polynomial $P_{n} \in \mathscr{P}_{n} \cap \Delta^{(1)}(Y)$ satisfying

$$
\left\|f-P_{n}\right\|<A
$$

and set

$$
Q_{n}:=P_{n}+T_{r-1} .
$$

Then, for $x_{0} \leqslant x \leqslant 1$,

$$
f(x)-P_{n}(x)=\tilde{g}_{r}(x)-P_{n}(x)=(-1)^{r-\rho} g_{r}(x)-Q_{n}(x),
$$

hence

$$
\begin{equation*}
\left|Q_{n}(x)\right| \leqslant\left|g_{r}(x)\right|+\left|f(x)-P_{n}(x)\right|<A+M_{r} . \tag{3.10}
\end{equation*}
$$

By virtue of (3.2), it follows that for $-1 \leqslant x<x_{0}$,

$$
\left|\tilde{g}_{r}(x)\right| \leqslant \frac{1}{(r-1)}\left|\int_{-1}^{x_{0}} \frac{(1+u)^{r-1}}{\varphi^{r}(u)} d u\right|<1 .
$$

Thus, for $-1 \leqslant x<x_{0}$,

$$
\left|Q_{n}(x)\right| \leqslant\left|P_{n}(x)\right|+\left|g_{r}(x)\right|+\left|\tilde{g}_{r}(x)\right|<A+M_{r}+1,
$$

which together with (3.10) gives

$$
\left\|Q_{n}\right\|<A+M_{r}+1
$$

and hence

$$
\begin{equation*}
\left\|Q_{n}^{(r-1)}\right\|<n^{2(r-1)}\left(A+M_{r}+1\right) . \tag{3.11}
\end{equation*}
$$

On the other hand, for some $\tau, \theta \in\left(-1, x_{0}\right)$,

$$
\begin{aligned}
\left|Q_{n}^{(r-1)}(\tau)\right| & =(r-2)!\left|\left[y_{1}, \ldots, y_{r-1} ; Q_{n}^{\prime}\right]\right|=(r-2)!\left|\left[y_{1}, \ldots, y_{r-1} ; T_{r-1}^{\prime}\right]\right| \\
& =\left|T_{r-1}^{(r-1)}(\theta)\right|=\left|g_{r}^{(r-1)}\left(x_{0}\right)\right| \geqslant n^{2(r-1)}\left(A+M_{r}+1\right),
\end{aligned}
$$

contradicting (3.11). Note that here we made use of the fact that $r-1 \leqslant s$ and that $P_{n} \in \Delta^{(1)}(Y)$. This completes Case c and therefore concludes the proof of our theorem.

REFERENCES

[BLe] R. K. Beatson and D. Leviatan, On comonotone approximation, Canad. Math. Bull. 26 (1983), 220-224.
[De] R. A. DeVore, Monotone approximation by polynomials, SIAM J. Math. Anal. 8 (1977), 906-921.
[Dzj] V. K. Dzjadyk, "Introduction to the Theory of Uniform Approximation of Functions by Polynomials," Nauka, Moscow, 1977 [in Russian].
[DzLiS] G. A. Dzyubenko, V. V. Listopad, and I. A. Shevchuk, Uniform estimates of monotone polynomial approximation, Ukrain. Mat. Zh. 45 (1993), 38-43 [in Russian].
[GS] J. Gilewicz and I. A. Shevchuk, Comonotone approximation, Fund. i Prikl. Math. 2 (1996), to appear.
[I] G. L. Iliev, Exact estimates for partially monotone approximation, Analysis Math. 4 (1978), 181-197.
[K] K. A. Kopotun, Uniform estimates of convex approximation of functions by polynomials, Mat. Zametki 51 (1992), 35-46; Math. Notes 51 (1992), 245-254 [Engl. transl.].
[Le] D. Leviatan, Monotone and comonotone approximation revisited, J. Approx. Theory 53 (1988), 1-16.
[LoZ] G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials, I, J. Approx. Theory 1 (1968), 501-504.
[N] D. J. Newman, Efficient comonotone approximation, J. Approx. Theory 25 (1979), 189-192.
[S] I. A. Shevchuk, "Polynomial Approximation and Traces of Functions Continuous on a Segment," Naukova Dumka, Kiev, 1992 [in Russian].

